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Diffusion of interacting Brownian particles 

B U Felderhof 
Institut fur Theoretische Physik A, RWTH Aachen, TH-Enveiterungsgelande Seffent- 
Melaten, 5100 Aachen, Germany 

Received 23 September 1977, in final form 2 November 1977 

Abstract. We develop a theory of Brownian motion for interacting spherical particles 
suspended in a fluid. Due to potential and hydrodynamic interactions the effective 
diffusion coefficient depends on the concentration of particles. We derive the correction to 
the bare diffusion coefficient to first order in the concentration. 

1. Introduction 

The classical theory of Brownian motion deals with the stochastic motion of a large 
particle due to random collisions with the much smaller molecules of the surrounding 
fluid. In macromolecular solutions the concentration of Brownian particles can be 
sufficiently high that the potential and hydrodynamic interactions between particles 
can no longer be neglected. Of particular relevance to light scattering studies is the 
question how the effective diffusion coefficient of the solute particles depends on the 
concentration. 

Einstein relation: 
The diffusion coefficient is related to the friction coefficient by a generalised 

(1.1) 

where p is the chemical potential and c is the volume fraction of solute particles. The 
concentration dependence of the friction coefficient f(c) was studied by Burgers 
(1941, 1942) and later by Pyun and Fixman (1964). These theories were hampered by 
incomplete knowledge of the hydrodynamic interaction between particles. A more 
complete theory has recently been presented by Batchelor (1972, 1976), who used 
exact numerical knowledge concerning the hydrodynamic interaction. The long range 
of the hydrodynamic interaction gives rise to complications which are resolved by 
Batchelor by quite subtle considerations. He restricted himself to stick boundary 
conditions and hard-sphere potential interactions. 

We formulate a theory which consistently uses the picture of diffusing interacting 
particles in the low-density limit. We allow general central potential interactions and 
extend the treatment of hydrodynamic interactions to include mixed slip-stick boun- 
dary conditions at the surface of the spheres. To this purpose we employ recent 
analytic results concerning the hydrodynamic interaction between two spheres 
(Felderhof 1977). The integrals involving the long-range part of the hydrodynamic 
interaction can be handled in a concise and transparent manner. For the case of hard 
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930 B UFelderhof 

spheres with stick boundary conditions our results agree with Batchelor's. For this 
case we can also compare with the numerous other results which have appeared in the 
literature. 

2. Basic equations 

We consider a collection of N identical spherical particles suspended in a fluid of 
much smaller molecules. The fluid motion is assumed to be adequately described by 
the linear Navier-Stokes equation for steady incompressible flow: 

7v2v  - v p  = 0,  v . v = o ,  (2.1) 

where 77 is the shear viscosity, v ( r )  is the flow field and p ( r )  is the pressure. For given 
boundary conditions at the surface of the particles and specified translational and 
rotational velocities there is a uniquely determined flow (v(r) ,  p ( r ) )  with correspond- 
ing stress tensor from which the forces and torques acting on the particles can be 
evaluated. We shall assume that the particles are freely rotating so that the torques 
vanish. The forces {e} and the translational velocities {ui} are then related by 

N 

k = l  
4 = c l i k  * uk, j = 1, . . . , N, 

where the 3N x 3N generalised friction matrix 3 depends on the instantaneous posi- 
tions ( r l ,  . . . , r N )  of the particle centres. 

The Brownian motion of the particles is assumed to be described by a 
Smoluchowski equation for the probability distribution P N ( r l ,  . . . , rN, t )  in configura- 
tion space (Zwanzig 1969, Deutch and Oppenheim 1971, Murphy and Aguirre 
1972). The equation reads 

(2.3) 
a p N  

at 
-- - v N *  D [ V N P N  + P @ N @ ) P N ] ,  

where D is a generalised diffusion matrix related to the friction matrix 5 by the 
Einstein relation 

D = kTt;-'. (2.4) 

Furthermore P = l/kT, and Q(r1,. . . , r N )  describes the potential interactions. We 
assume pair interactions of the form 

(2.5) 

In the low-density limit the diffusion matrix D can be approximated as a sum of 
single-particle and pair contributions: 

where Do is the diffusion coefficient for a single particle, and A(i, j )  and B(i, j )  are 
modifications to the diffusion coefficient due to hydrodynamic interactions. More 
precisely, the coefficients are defined from the solution of the hydrodynamic two-body 
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problem in the following manner: 

u1= P (Dol + A(l, 2)) . Fi+ @B(l,2)  . Fz 

~2=/3B(2 ,  l ) .F i+p(Dol  +A(2, l)).Fz, 

In § 4 we shall give explicit expressions for the coefficients in terms of a series 
expansion in powers of the inverse distance between centres. With the approximation 
(2.6) the Smoluchowski equation (2.3) becomes 

Although this equation is simpler than (2.3), where the diffusion matrix D is not 
known explicitly, it still represents a complicated many-body problem. The restriction 
to hydrodynamic pair interactions is customary in polymer problems and presumably 
does not represent too drastic a simplification even for higher densities. 

3. One-body and two-body equations 

From the N-body Smo!uchowski equation (2.8) one can derive a coupled hierarchy of 
equations for the set of s-body distribution functions (s = 1, . . . , N). To this hierarchy 
one can apply the method of kinetic gas theory by taking the thermodynamic limit in 
the manner of Bogoliubov: N + CO, V + CO, N j  V = no constant, where V is the volume 
of the system (Bogoliubov 1946, translated in de Boer and Uhlenbeck 1962). 
Keeping terms to linear order in no the equation for the particle density n(r,  t) 
becomes 

where n2(r1, r2, t) is the pair density. To lowest order in no the latter satisfies 
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Due to the low-density approximation equations (3.1) and (3.2) decouple from the 
rest of the hierarchy. The pair density n2(rl, r2, t) must satisfy n2(r1, r2, t ) -  
n(r1, t)n(rz,  t) for I r l - r ~ / + m ,  but the integral of n2(r1, r2, t )  over r2 does not neces- 
sarily equal n ( r l ,  t ) .  

The equations (3.1) and (3.2) have the time-independent equilibrium solution 

n ( rd  = no, n2(r1, r2> = nigo(r1- rz> (3.3) 

where no is a constant, with pair correlation 

and consider deviations n1 and gl from the equilibrium solution 

To terms linear in n l  and gl the pair density becomes 

(3.8) 

Similarly one derives a lengthy linearised equation for gl(rl, r2, t). However, if one 
uses the fact that A(1,2) = A(2, l )  and B(1,2) = B(2, 1) depend only on r12, and if one 
restricts attention to small density gradients so that Vznl(r2) - Vlnl(rl), then one sees 
that g, is of order n:. Hence to terms linear in no the terms with gl can be omitted 
from (3.8) and this equation simplifies to 

As we shall show, for intermolecular potentials ~5 of short range this amounts to a 
diffusion equation for nl(r l ,  t )  with a modified diffusion coefficient. 
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4. Derivation of modified diffusion coefficient 

For mixed slip-stick boundary conditions at the surface of the spheres the bare 
single-particle diffusion coefficient is 

DO= kT/6.rrqa(l-t)  (4.1) 

where the parameter 5 characterises the boundary condition. It takes values in tbe 
range 0 s 5 s f ,  the value 5 = 0 corresponding to stick, and 5 = 4 to pure slip. We have 
earlier derived expressions for the diffusion tensors A(l ,  2) and B(1,2) in an expansion 
in inverse powers of the centre-to-centre distance (Felderhof 1977). For the tensor 
A(l ,  2) we found 

15 1-6 a 4  1-35 a6 
1+25 r12 

21 1-5 a6  3 1-45 a6 
80 1+4h 112 4 1+5 112 

20 1-5 8 2  r12 

-P+12- 7-p 

-g-(1+23P)-- - T u -  P) 

A(1,2) = Do(1- 5) [ - - - 
4 1+25 r:2 

-- - 
8 

-- 1 - 1-65 - a6 (1 +3P)+O($)] 

where P = r12r12/rf2. For the tensor B(1,2) we found 

B(1,2)=B~(1,2)+Bs(l ,  2) 

where the long-range part BL(1,2) is given by 

and the short-range part Bs(l, 2) by 

(4.2) 

(4.3) 

(4.4) 

The long-range part BL(l, 2) can be further split into an Oseen part Bo(l,2) and a 
dipole part BD(l, 2), corresponding to the two terms in equation (4.4). 

We now discuss the various terms in equation (3.9). The second term gives a virial 
correction. Since the integrand is short range we can expand nl(r2, t )  about rl. 
Keeping only the first non-vanishing term we get 

For the integral in the third term of (3.9) we obtain after performing the angular 
integrations 

I A(1,2)g0 dr2 = DoCAI (4.8) 



934 B UFelderhof 

with 

In the last integral in (3.9) we treat the Oseen part, the dipole part and the short-range 
part separately. Starting with the latter we have 

5 Bs(l,2)g0. Vznl(r2,  t )  drz = D o C s V l n l ( r l ,  t )  (4.10) 

with 

75 (1-5p 47r , r-5 -i3+ C -  e dr. (4.11) 

(4.12) 

(4.13) 

where we have used the fact that the Oseen tensor is the Green function of the linear 
Navier-Stokes equation for incompressible flow. The integrand of the second integral 
in equation (4.12) has short range and one can approximate 

[ BoU, 2)(g0- 1) V m ( r 2 ,  t )  dr2 = D o C o V l n l ( r l ,  t )  (4.14) 

with 
m 

CO = (1 - 5 ) 4 m  (e-” - l ) r  dr. (4.15) 

For the dipole part we write 

BD(1,2)= -;Do(l-35)a3F(1, 2) (4.16) 

where 

F(1,2)= -(1-3P)/r:~ (4.17) 

is the electrostatic dipole-dipole tensor. Proceeding in the same way as in (4.12) but 
cutting out an infinitesimal sphere of radius E about rl we get a contribution 

1. F(1,2) V ~ n l ( r z ,  t )  dr2 = W r d ,  (4.18) 

where we have used the electrostatic analogy to introduce a ‘Lorentz local field’ EL 
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due to the ‘polarisation’ P = Vnl. Hence EL = E +&rP, where E satisfies V . E = 
- 41rV . P. Therefore we obtain 

V1 . le F(l, 2). V2nl(r2, t )  dr2 = - !~V?n~( r l ,  t). (4.19) 

The remaining term from the dipole part can be approximated by 

1. B D ( ~ ,  2 b 0 -  1)Vznl(r2, t )  dr2= B D ( ~ ,  2 b 0 -  1) dr2 V l n l h  t )  (4.20) 

which vanishes by integration over angles. Thus we obtain in total for the dipolar term 

(4.21) 

I. 
vi I B~(1,2)go V~nl(r2, t )  d r ~ ~ D o C ~ , V : n i ( r i ,  t )  

with 

c D-3r(1-35)a3. - 4  (4.22) 

Note that one would be free to cut out an infinitesimal ellipsoid instead of a sphere in 
(4.18). That would give a different result in (4.19), but the integral in (4.20) would not 
vanish and compensate for the difference. The choice of a sphere is the simplest and 
most obvious one. Combining the results of this section we find that equation (3.9) 
can be approximated by the diffusion equation 

with 

D =DO[l+ nO(CV+ CO+ c D +  cS+ CA)] 

where the coefficients Cj are given by (4.7), (4.9), (4.11), (4.15) and (4.22). 

(4.23) 

(4.24) 

5. Results for hard spheres 

We specialise the results of the preceding section to the case of hard spheres. 
Conventionally the effective diffusion coefficient is written in the form 

D =Do(l + A c )  (5.1) 

where c = &a3no is the volume fraction. From (4.24) we have 

A = A ~ + A ~ + A D  + A ~ + A A  (5.2) 

where Ci = &-a3hi. For the various coefficients we find 

A V =  8, A 0  = -6(1 -e), 
75 (1-5p 

A s = -  
256 (1 + 25)*’ 

AI, = 1 - 35, 

(5.3) -+ --------__- 
8 1 + 2 5  2 1 + 2 5  320 1+4[ 16 1 + 5  80 1-5 3 * 15 1-5 1 1 - 3 5  91 1-5 1 1 - 4 5  1 1 - 6  

A A  = (1 - 6 )  ( - - 
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For stick (5 = 0) one gets A s  = 0.29, A A  = -1.73 so that 

A = 8 - 6 +  1 +0*29-  1.73 = 1.56. (5.4) 
This result can be compared with values from the literature. The values As = 0.29, 
A A  = -1.73 obtained from our series expansion are close to the values A S  = 0.28, 
A A =  -1.83 quoted by Batchelor (1976) as resulting from numerical integration of 
exact results for the hydrodynamic two-body problem. Batchelor gave a completely 
different derivation for the long-range hydrodynamic effects but also arrived at 
A , + A D =  -5. Thus the result (5.4) is essentially identical to Batchelor’s. An earlier 
derivation along similar lines was given by Pyun and Fixman (1964), who found 
however A o + A D  = -5.5 and As+Aa = -1.66 leading to A = 0.84. It was pointed out 
by Batchelor that a term is missing from the calculation of Pyun and Fixman, the 
corrected value being A o + A D  = - 5 .  Altenberger and Deutch (1973) derived an 
equation (their equation (4.9)) similar to our equation (3.9). Note that (3.9) also holds 
for the total density n = no+ nl since no cancels on both sides. The equation of 
Altenberger and Deutch differs in that the term with A(l, 2) is missing and B(1’2) is 
approximated by the Oseen part. Correspondingly, they obtained Av+Ao = 8 -6 = 2. 
Harris (1976) added the dipole part and using the Fourier transform method of 
Altenberger and Deutch found A = A v + A o + A D =  8 - 6 + 1 =  3. Phillies (1973) 
neglects hydrodynamic interactions altogether and therefore arrives at A = A V  = 8. 
Anderson and Reed (1975) derived a modified diffusion equation which for hard 
spheres leaves only the contribution corresponding to A A .  Thus they find A = A A =  
-1.83. Their derivation is not systematic and they have omitted certain terms which 
appear in our derivation. Aguirre and Murphy (1973) also have only the contribution 
corresponding to A A ,  but by erroneous calculation they arrive at A A =  -?= -2.625. 
Hess and Klein (1977) used a diagrammatic method which is difficult to compare with 
the other approaches. For hard spheres they obtain A = 1. 

There seems to be no calculation in the literature corresponding to mixed slip- 
stick boundary conditions. If Batchelor’s calculation is modified to take account of 
mixed boundary conditions one obtains? for the long-range contributions the sum 
- (y-Zf)+f( l -  3[)= -5 + 36 (where the terms correspond to Batchelor’s V ’ +  V ” )  
identical to our A 0  + A D  = -6(1- [)+ (1 - 35) = -5 + 35. The numerical value for A for 
the pure slip boundary condition is 

A = 8 - 4  + 0+0.03  -0.53 = 3.50. ( 5 . 5 )  

As expected the hydrodynamic contributions are smaller in this case and therefore the 
total effect is larger. 

6. Light scattering 

In conclusion we calculate the spectrum of light scattered from the solution. The 
intensity of light scattered with wavevector transfer k and frequency change w is 
proportional to the scattering function 

S(k, U ) = -  27r J J  (nl(r ,  t+T)n l ( r ’ ,  r)>exp[-ik. ( r - r ’ )+ iw~]  d(r-r’)dT. (6.1) 

t R Schmitz, private communication. 
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According to the general formalism of irreversible thermodynamics the density 
correlation function can be evaluated from the linear equation (4.23). Hence the 
scattering function is 

1 Dk2 
7~ w 2 + D 2 k 4  

S(k, U )  = -S(k) 

where D is given by (4.24) and S ( k )  is the static structure factor, 

S(k) = no + no (e-” - 1) dr, ’ J  
in the low-density limit. Therefore the linewidth of the scattered light is determined 
by the effective diffusion coefficient (4.24). 

The short-time behaviour of the density correlation function has been studied by 
Ackerson (1976). Hydrodynamic corrections are taken into account in the Oseen 
approximation. 
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